Архив рубрики: Мир науки

© "Семь искусств"
    года

Валерий Сойфер: Академик и студент

Published / by Леонид Комиссаренко / 3 комментария к записи Валерий Сойфер: Академик и студент

Яков Борисович Зельдович мог иногда на что-то надуться и вообще был раним, Юлий Борисович Харитон держался несколько отстранено, потому что был облечен огромной властью и ощущал свою ответственность, а вот у Тамма этой отстраненности не было ничуть. Атмосфера легкости во взаимоотношениях отличала этого великого человека, и о ней с любовью вспоминали все, кто знал его.
Continue reading

Share
© "Семь искусств"
    года

Юрий Климонтович: Вернер Эбелинг

Published / by Леонид Комиссаренко / Leave a Comment

Обобщение этого результата на социальные системы дает основание предположить, что турбулентная жизнь является более разнообразной, а зачастую, более содержательной и более интересной, чем ламинарная. Для реализации больших возможностей турбулентной жизни нужны, конечно необходимые условия, которые могут быть реализованы лишь в открытых системах.
Continue reading

Share
© "Семь искусств"
    года

Евгений Беркович: «Революция вундеркиндов» и судьбы ее героев

Published / by admin / 4 комментария к записи Евгений Беркович: «Революция вундеркиндов» и судьбы ее героев

Расставание Паули с Борном прошло, как говорится, «без слез»: профессору нужен был другой ассистент, а юному исследователю – другой научный руководитель и соавтор. Научный стиль Борна, ставящий на первое место математическую модель и расчеты, был чужд стилю Паули, опиравшемуся, прежде всего, на физическую интуицию и наглядные модели.

Continue reading

Share
© "Семь искусств"
    года

Андрей Куликовский: Леонид Иванович Седов — мои впечатления и жизнь в мире его влияния

Published / by Леонид Комиссаренко / Leave a Comment

Часто возникали по каким-то вопросам споры, в которых Леонид Иванович выступал более или менее на равных с остальными. При этом можно было с ним спорить и, случалось, отстаивать свою правоту. Но в чём не было равных с Леонидом Ивановичем — это в умении увидеть новые постановки задач, которые должны и могут быть решены. Именно поэтому у Леонида Ивановича так много учеников.
Continue reading

Share
© "Семь искусств"
    года

Леонид Кауфман: Подземные физические лаборатории: дизайн и строительство

Published / by Леонид Комиссаренко / 3 комментария к записи Леонид Кауфман: Подземные физические лаборатории: дизайн и строительство

Денни, оставшийся в юности без матери (она умерла от рака), провел лето после средней школы в тюрьме несовершеннолетних за пьяную драку. Судья отпустил его при условии, что он поступит в колледж. В течение года после окончания колледжа он создал компанию по производству строительных химикатов, чья продажа через пару десятилетий позволила ему комфортно уйти в отставку в возрасте 45 лет и отправиться во Флориду играть в гольф.
Continue reading

Share
© "Семь искусств"
    года

Валерий Сойфер: Академик и студент

Published / by Леонид Комиссаренко / 8 комментариев к записи Валерий Сойфер: Академик и студент

Учреждение Радиобиологического отдела стало важнейшим шагом на пути преодоления монополии Лысенко. Дотянуться до атомного центра и задушить своими мозолистыми ладонями очередное научное учреждение в области генетики Лысенко было не под силу. Continue reading

Share
© "Семь искусств"
    года

References for the article «Towards physical principles of biological evolution»

Published / by admin / 1 комментарий к записи References for the article «Towards physical principles of biological evolution»

References

  1. Darwin C: On the Origin of Species; 1859.
  2. Dobzhansky T: Genetics and the origin of species, 2nd edn. New York: Columbia University Press; 1951.
  3. Dobzhansky T: Nothing in biology makes sense except in the light of evolution. The American Biology Teacher 1973, 35, 125-129.
  4. Koonin EV: The Logic of Chance: The Nature and Origin of Biological Evolution Upper Saddle River, NJ: FT press; 2011.
  5. Goldenfeld N, Woese C: Biology’s next revolution. Nature 2007, 445(7126), 369.
  6. Goldenfeld N, Woese CR: Life is Physics: Evolution as a Collective Phenomenon Far From Equilibrium. Annu Rev CondensMatter Phys 2011, 2, 375-399.
  7. Sella G, Hirsh AE: The application of statistical physics to evolutionary biology. Proc Natl Acad Sci U S A 2005, 102(27), 9541-9546.
  8. Ao P: Emerging of Stochastic Dynamical Equalities and Steady State Thermodynamics from Darwinian Dynamics. Commun Theor Phys 2008, 49(5), 1073-1090.
  9. Barton NH, Coe JB: On the application of statistical physics to evolutionary biology. J Theor Biol 2009, 259(2), 317-324.
  10. de Vladar HP, Barton NH: The contribution of statistical physics to evolutionary biology. Trends Ecol Evol 2011, 26(8), 424-432.
  11. Barreiro LB, Quintana-Murci L: From evolutionary genetics to human immunology: how selection shapes host defence genes. Nat Rev Genet 2010, 11(1), 17-30.
  12. Seppala O: Natural selection on quantitative immune defence traits: a comparison between theory and data. J Evol Biol 2015, 28(1), 1-9.
  13. Bozic I, Antal T, Ohtsuki H, Carter H, Kim D, Chen S, Karchin R, Kinzler KW, Vogelstein B, Nowak MA: Accumulation of driver and passenger mutations during tumor progression. Proc Natl Acad Sci U S A 2010, 107(43), 18545-18550.
  14. Casas-Selves M, Degregori J: How cancer shapes evolution, and how evolution shapes cancer. Evolution (N Y) 2011, 4(4), 624-634.
  15. McFarland CD, Korolev KS, Kryukov GV, Sunyaev SR, Mirny LA: Impact of deleterious passenger mutations on cancer progression. Proc Natl Acad Sci U S A 2013, 110(8), 2910-2915.
  16. McFarland CD, Mirny LA, Korolev KS: Tug-of-war between driver and passenger mutations in cancer and other adaptive processes. Proc Natl Acad Sci U S A 2014, 111(42), 15138-15143.
  17. Polanyi M: Life’s irreducible structure. Science 1968, 160, 1308-1312.
  18. Rosenberg A: Darwininan Reductionism, Or, How to Stop Worrying and Love MoOlecular Biology Chicago: Univ Chicago Press; 2006.
  19. Laughlin RB, Pines D: The theory of everything. Proc Natl Acad Sci U S A 2000, 97(1), 28-31.
  20. Laughlin RB, Pines D, Schmalian J, Stojkovic BP, Wolynes P: The middle way. Proc Natl Acad Sci U S A 2000, 97(1), 32-37.
  21. Anderson PW: More is different. Science 1972, 177(4047), 393-396.
  22. Laughlin RB: A Different Universe: Reinventing Physics From the Bottom Down. New York: Basic Books; 2008.
  23. Anderson PW: More and Different: Notes from a Thoughtful Curmudgeon. Singapour: World Scientific Publishing Company; 2011.
  24. West G: Scale: The Universal Laws of Growth, Innovation, Sustainability, and the Pace of Life in Organisms, Cities, Economies, and Companies. New York: Penguin Press; 2017.
  25. Schroedinger E: What is Life? The Physical Aspect of the Living Cell. Dublin: Trinity College Press; 1944.
  26. Watson JD, Crick FH: Molecular structure of nucleic acids; a structure for deoxyribose nucleic acid. Nature 1953, 171(4356), 737-738.
  27. Watson JD, Crick FH: Genetical implications of the structure of deoxyribonucleic acid. Nature 1953, 171(4361), 964-967.
  28. Frank-Kamenetskii MD: Unraveling Dna: The Most Important Molecule Of Life, 2nd edn. New York: Basic Books; 1997.
  29. Koonin EV: Why the Central Dogma: on the nature of the great biological exclusion principle. Biol Direct 2015, 10, 52.
  30. Prigogine IR, Stengers I: Order Out of Chaos. London: Bantam; 1984.
  31. Lemon E, Stewart DW, Shawcroft RW: The Sun’s Work in a Cornfield. Science 1971, 174(4007), 371-378.
  32. Toussaint O, Schneider ED: The thermodynamics and evolution of complexity in biological systems. Comp Biochem Physiol A Mol Integr Physiol 1998, 120(1), 3-9.
  33. Pascal R, Pross A, Sutherland JD: Towards an evolutionary theory of the origin of life based on kinetics and thermodynamics. Open Biol 2013, 3(11), 130156.
  34. Gell-Mann M: The Quark and the Jaguar: Adventures in the Simple and the Complex New York: St. Martin’s Griffin; 1995.
  35. Adami C, Ofria C, Collier TC: Evolution of biological complexity. Proc Natl Acad Sci U S A 2000, 97(9), 4463-4468.
  36. McShea DW, Brandon RN: Biology’s First Law: The Tendency for Diversity and Complexity to Increase in Evolutionary Systems. Chicago: Univ Chicago Press; 2010.
  37. Adami C: What is complexity? Bioessays 2002, 24(12), 1085-1094.
  38. Koonin EV: A non-adaptationist perspective on evolution of genomic complexity or the continued dethroning of man. Cell Cycle 2004, 3(3), 280-285.
  39. Koonin EV: The meaning of biological information. Philos Trans A Math Phys Eng Sci 2016, 374(2063).
  40. Heim NA, Payne JL, Finnegan S, Knope ML, Kowalewski M, Lyons SK, McShea DW, Novack-Gottshall PM, Smith FA, Wang SC: Hierarchical complexity and the size limits of life. Proc Biol Sci 2017, 284(1857).
  41. Egelman E (ed.): Comprehensive Biophysics. New York: Academic Press; 2012.
  42. Bohr N: The Atomic Theory and the Description of Nature. Oxford: Ox Bow Press; 1934.
  43. Fisher RA: The Genetical Theory of Natural Selection. London & New York: Oxford University Press; 1930.
  44. Gavrilets S: Fitness Landscapes and the Origin of Species. Princeton: Princeton University Press; 2004.
  45. Gavrilets S, Gravner J: Percolation on the fitness hypercube and the evolution of reproductive isolation. J Theor Biol 1997, 184(1), 51-64.
  46. Gravner J, Pitman D, Gavrilets S: Percolation on fitness landscapes: effects of correlation, phenotype, and incompatibilities. J Theor Biol 2007, 248(4), 627-645.
  47. Shannon CE, Weaver W: The Mathematical Theory of Communication. Chicago: University of Illinois Press; 1949.
  48. Lynch M: The origins of genome archiecture. Sunderland, MA: Sinauer Associates; 2007.
  49. Lynch M, Conery JS: The origins of genome complexity. Science 2003, 302(5649), 1401-1404.
  50. Lynch M: The frailty of adaptive hypotheses for the origins of organismal complexity. Proc Natl Acad Sci U S A 2007, 104 Suppl 1, 8597-8604.
  51. Lynch M: The origins of eukaryotic gene structure. Mol Biol Evol 2006, 23(2), 450-468.
  52. Koonin EV: Evolution of genome architecture. Int J Biochem Cell Biol 2009, 41(2), 298-306.
  53. Maynard Smith J, Szathmary E: The Major Transitions in Evolution. Oxford: Oxford University Press; 1997.
  54. Szathmary E: Toward major evolutionary transitions theory 2.0. Proc Natl Acad Sci U S A 2015, 112(33), 10104-10111.
  55. Landau LD, Lifshitz EM: Statistical Physics. Oxford: Pergamon; 1980.
  56. Bloch I, Dalibard J, Zwerger W: Many-body physics with ultracold gases. Reviews of Modern Physics 2008, 80(3), 885-964.
  57. Lewenstein M, Sanpera A, Ahufinger V: Ultracold Atoms in Optical Lattices: Simulating Quantum Many-Body Systems. Oxford: Oxford Univ Press; 2012.
  58. Edwards SF, Anderson PW: Theory of spin glasses. J Phys F: Metal Phys 1975, 5, 965-974.
  59. Mezard M, Parisi G, Virasoro MA (eds.): Spin Glass Theory and Beyond Singapore: World Scientific; 1987.
  60. Rammal R, Toulouse G, Virasoro MA: Ultrametricity for physicists. Rev Mod Phys 1986, 58, 765-788.
  61. Binder K, Young AP: Spin glasses: Experimental facts, theoretical concepts, and open questions. Rev Mod Phys 58, 801-976 1986, 58, 801-976.
  62. Das SP: Mode-coupling theory and the glass transition in supercooled liquids. Rev Mod Phys 76, 785-851 2004, 76, 785-851.
  63. Parisi G: A sequence of approximated solutions to the S-K model for spin glasses. J Phys A 1980, 13, 1101-1112.
  64. Monasson R: Structural Glass Transition and the Entropy of the Metastable States. Phys Rev Lett 1995, 75, 2847-2850.
  65. Schmalian G, Wolynes PG: Stripe Glasses: Self-Generated Randomness in a Uniformly Frustrated System. Phys Rev Lett 85, 836-839 2000, 85, 836-839.
  66. Principi A, Katsnelson MI: Stripe glasses in ferromagnetic thin films. Phys Rev B 93 2016, 93, 054410.
  67. Principi A, Katsnelson MI: Self-Induced Glassiness and Pattern Formation in Spin Systems Subject to Long-Range Interactions. Phys Rev Lett 117 2016, 117, 137201
  68. Ruelle D: Statistical Mechanics: Rigorous Results Singapore: World Scientific; 1999.
  69. Waddington CH, Robertson E: Selection for developmental canalisation. Genet Res 1966, 7(3), 303-312.
  70. Flatt T: The evolutionary genetics of canalization. Q Rev Biol 2005, 80(3), 287-316.
  71. Villain J, Bidaux R, Carton J-P, Conte R: Order as an effect of disorder. J Phys France 1980, 41, 1263-1272.
  72. Shender EF: Antiferromagnetic garnets with fluctuationally interacting sublattices. Sov Phys JETP 1982, 56, 178-184.
  73. Henley CL: Ordering due to disorder in a frustrated vector antiferromagnet. Phys Rev Lett 1989, 62, 2056-2059.
  74. Forterre P, Prangishvili D: The great billion-year war between ribosome- and capsid-encoding organisms (cells and viruses) as the major source of evolutionary novelties. Ann N Y Acad Sci 2009, 1178, 65-77.
  75. Aravind L, Anantharaman V, Zhang D, de Souza RF, Iyer LM: Gene flow and biological conflict systems in the origin and evolution of eukaryotes. Front Cell Infect Microbiol 2012, 2, 89.
  76. Stern A, Sorek R: The phage-host arms race: shaping the evolution of microbes. Bioessays 2011, 33(1), 43-51.
  77. Koonin EV, Krupovic M: A Movable Defense. The Scientist 2015(january 1).
  78. Jalasvuori M, Koonin EV: Classification of prokaryotic genetic replicators: between selfishness and altruism. Ann N Y Acad Sci 2015, 1341, 96-105.
  79. Koonin EV, Starokadomskyy P: Are viruses alive? The replicator paradigm sheds decisive light on an old but misguided question. Stud Hist Philos Biol Biomed Sci 2016, 59, 125-134.
  80. Holmes EC: The Evolution and Emergence of RNA Viruses. Oxford: Oxford University Press; 2009.
  81. Koonin EV, Wolf YI, Katsnelson MI: Inevitability of the emergence and persistence of genetic parasites caused by thermodynamic instability of parasite-free states. Biol Direct 2017, in press.
  82. Koonin EV: Viruses and mobile elements as drivers of evolutionary transitions. Philos Trans R Soc Lond B Biol Sci 2016, 371(1701).
  83. Szathmary E: The evolution of replicators. Philos Trans R Soc Lond B Biol Sci 2000, 355(1403), 1669-1676.
  84. Takeuchi N, Hogeweg P: Evolution of complexity in RNA-like replicator systems. Biol Direct 2008, 3, 11.
  85. Takeuchi N, Hogeweg P: Evolutionary dynamics of RNA-like replicator systems: A bioinformatic approach to the origin of life. Phys Life Rev 2012, 9(3), 219-263.
  86. Takeuchi N, Hogeweg P, Koonin EV: On the origin of DNA genomes: Evolution of the division of labor between template and catalyst in model replicator systems PLoS Comput Biol 2011, in press.
  87. Labrie SJ, Samson JE, Moineau S: Bacteriophage resistance mechanisms. Nat Rev Microbiol 2010, 8, 317-327.
  88. Makarova KS, Wolf YI, Koonin EV: Comparative genomics of defense systems in archaea and bacteria. Nucleic Acids Res 2013, 41(8), 4360-4377.
  89. Koonin EV, Makarova KS, Wolf YI: Evolutionary Genomics of Defense Systems in Archaea and Bacteria. Annu Rev Microbiol 2017.
  90. Ameisen JC: On the origin, evolution, and nature of programmed cell death: a timeline of four billion years. Cell Death Differ 2002, 9(4), 367-393.
  91. Koonin EV, Aravind L: Origin and evolution of eukaryotic apoptosis: the bacterial connection. Cell Death Differ 2002, 9(4), 394-404.
  92. Ameisen JC: Looking for death at the core of life in the light of evolution. Cell Death Differ 2004, 11(1), 4-10.
  93. Kaczanowski S: Apoptosis: its origin, history, maintenance and the medical implications for cancer and aging. Phys Biol 2016, 13(3), 031001.
  94. Koonin EV, Zhang F: Coupling immunity and programmed cell suicide in prokaryotes: Life-or-death choices. Bioessays 2017, 39(1), 1-9.
  95. Iranzo J, Lobkovsky AE, Wolf YI, Koonin EV: Virus-host arms race at the joint origin of multicellularity and programmed cell death. Cell Cycle 2014, 13(19), 3083-3088.
  96. Durand PM, Sym S, Michod RE: Programmed Cell Death and Complexity in Microbial Systems. Curr Biol 2016, 26(13), R587-593.
  97. Embley TM, Martin W: Eukaryotic evolution, changes and challenges. Nature 2006, 440(7084), 623-630.
  98. Embley TM, Williams TA: Evolution: Steps on the road to eukaryotes. Nature 2015, 521(7551), 169-170.
  99. Martin W, Koonin EV: Introns and the origin of nucleus-cytosol compartmentation. Nature 2006, 440, 41-45.
  100. Spang A, Saw JH, Jorgensen SL, Zaremba-Niedzwiedzka K, Martijn J, Lind AE, van Eijk R, Schleper C, Guy L, Ettema TJ: Complex archaea that bridge the gap between prokaryotes and eukaryotes. Nature 2015, 521(7551), 173-179.
  101. Koonin EV: Origin of eukaryotes from within archaea, archaeal eukaryome and bursts of gene gain: eukaryogenesis just made easier? Philos Trans R Soc Lond B Biol Sci 2015, 370(1678), 20140333.
  102. Koonin EV: Archaeal ancestors of eukaryotes: not so elusive any more. BMC Biol 2015, 13, 84.
  103. Zaremba-Niedzwiedzka K, Caceres EF, Saw JH, Backstrom D, Juzokaite L, Vancaester E, Seitz KW, Anantharaman K, Starnawski P, Kjeldsen KU et al: Asgard archaea illuminate the origin of eukaryotic cellular complexity. Nature 2017, 541(7637), 353-358.
  104. Lopez-Garcia P, Moreira D: Selective forces for the origin of the eukaryotic nucleus. Bioessays 2006, 28(5), 525-533.
  105. Koonin EV: The origin of introns and their role in eukaryogenesis: a compromise solution to the introns-early versus introns-late debate? Biol Direct 2006, 1, 22.
  106. Koonin EV: Intron-dominated genomes of early ancestors of eukaryotes. J Hered 2009, 100(5), 618-623.
  107. Blackstone NW: Why did eukaryotes evolve only once? Genetic and energetic aspects of conflict and conflict mediation. Philos Trans R Soc Lond B Biol Sci 2013, 368(1622), 20120266.
  108. Suomalainen A, Battersby BJ: Mitochondrial diseases: the contribution of organelle stress responses to pathology. Nat Rev Mol Cell Biol 2017.
  109. Bensasson D, Zhang D, Hartl DL, Hewitt GM: Mitochondrial pseudogenes: evolution’s misplaced witnesses. Trends Ecol Evol 2001, 16(6), 314-321.
  110. Michod RE: Evolution of individuality during the transition from unicellular to multicellular life. Proc Natl Acad Sci U S A 2007, 104 Suppl 1, 8613-8618.
  111. Leslie MP, Shelton DE, Michod RE: Generation time and fitness tradeoffs during the evolution of multicellularity. J Theor Biol 2017, 430, 92-102.
  112. Aktipis CA, Boddy AM, Jansen G, Hibner U, Hochberg ME, Maley CC, Wilkinson GS: Cancer across the tree of life: cooperation and cheating in multicellularity. Philos Trans R Soc Lond B Biol Sci 2015, 370(1673).
  113. Greaves M: Evolutionary determinants of cancer. Cancer Discov 2015, 5(8), 806-820.
  114. Jacqueline C, Biro PA, Beckmann C, Moller AP, Renaud F, Sorci G, Tasiemski A, Ujvari B, Thomas F: Cancer: A disease at the crossroads of trade-offs. Evol Appl 2017, 10(3), 215-225.
  115. Archetti M: Complementation, genetic conflict, and the evolution of sex and recombination. J Hered 2010, 101 Suppl 1, S21-33.
  116. Gavrilets S: Is sexual conflict an «engine of speciation»? Cold Spring Harb Perspect Biol 2014, 6(12), a017723.
  117. Nonacs P: Kinship, greenbeards, and runaway social selection in the evolution of social insect cooperation. Proc Natl Acad Sci U S A 2011, 108 Suppl 2, 10808-10815.
  118. de Gennes P-G: Scaling Concepts in Polymer Physics Ithaca: Cornell Univ. Press 1979.
  119. Shklovskii BI, Efros AL: Electronic Properties of Doped Semiconductors Berlin. : Springer; 1984.
  120. Mustonen V, Lassig M: From fitness landscapes to seascapes: non-equilibrium dynamics of selection and adaptation. Trends Genet 2009, 25(3), 111-119.
  121. Catalan P, Arias CF, Cuesta JA, Manrubia S: Adaptive multiscapes: an up-to-date metaphor to visualize molecular adaptation. Biol Direct 2017, 12(1), 7.
  122. Haldane JBS: The cost of natural selection. J Genet 1957, 55, 511-524.
  123. Darlington PJ, Jr.: The cost of evolution and the imprecision of adaptation. Proc Natl Acad Sci U S A 1977, 74(4), 1647-1651.
  124. Darlington PJ, Jr.: Evolution: questions for the modern theory. Proc Natl Acad Sci U S A 1983, 80(7), 1960-1963.
  125. Barton NH: Linkage and the limits to natural selection. Genetics 1995, 140(2), 821-841.
  126. Bell G: Evolutionary rescue and the limits of adaptation. Philos Trans R Soc Lond B Biol Sci 2013, 368(1610), 20120080.
  127. Smirnov S: Critical percolation in the plane: conformal invariance, Cardy’s formula, scaling limits. C R Acad Sci Paris Sér I Math 2001, 333, 239-244.
  128. Beffara V: Hausdorff dimensions for SLE6. Ann Probab 2004., 32, 2606-2629.
  129. Kager W, Nienhuis B: A Guide to Stochastic Löwner Evolution and Its Applications. J Stat Phys 2004, 115, 1149-1229.
  130. Aizenman M, Newman CM: Tree graph inequalities and critical behavior in percolation models

J Stat Phys 1984 36, 107-143.

  1. Barsky DJ, Aizenman M: Percolation Critical Exponents Under the Triangle Condition Ann Prob 1991 19, 1520-1536.
  2. Hara T, Slade G: Mean-field critical behaviour for percolation in high dimensions. Commun Math Phys 1990, 128, 333-391.
  3. Puigbo P, Wolf YI, Koonin EV: Search for a ‘Tree of Life’ in the thicket of the phylogenetic forest. J Biol 2009, 8(6), 59.
  4. Puigbo P, Wolf YI, Koonin EV: Seeing the Tree of Life behind the phylogenetic forest. BMC Biol 2013, 11, 46.
  5. Puigbo P, Wolf YI, Koonin EV: The tree and net components of prokaryote evolution. Genome Biol Evol 2010, 2, 745-756.
  6. Doolittle WF: Lateral genomics. Trends Cell Biol 1999, 9(12), M5-8.
  7. Doolittle WF: Phylogenetic classification and the universal tree. Science 1999, 284(5423), 2124-2129.
  8. Doolittle WF: Uprooting the tree of life. Sci Am 2000, 282(2), 90-95.
  9. Doolittle WF, Bapteste E: Pattern pluralism and the Tree of Life hypothesis. Proc Natl Acad Sci U S A 2007, 104(7), 2043-2049.
  10. Bapteste E, Susko E, Leigh J, MacLeod D, Charlebois RL, Doolittle WF: Do orthologous gene phylogenies really support tree-thinking? BMC Evol Biol 2005, 5, 33.
  11. Koonin EV, Dolja VV, Krupovic M: Origins and evolution of viruses of eukaryotes: The ultimate modularity. Virology 2015, 479-480, 2-25.
  12. Iranzo J, Krupovic M, Koonin EV: The Double-Stranded DNA Virosphere as a Modular Hierarchical Network of Gene Sharing. MBio 2016, 7(4).
  13. Iranzo J, Krupovic M, Koonin EV: A network perspective on the virus world. Commun Integr Biol 2017, 10(2), e1296614.
  14. Pattee HH: The physics of symbols: bridging the epistemic cut. Biosystems 2001, 60(1-3), 5-21.
  15. von Neumann J: Mathematical Foundations of Quantum Mechanics Princeton: Princeton Univ. Press; 1955.
  16. Heisenberg W: The Physical Principles of the Quantum Theory New York: Dover 1949
  17. Jammer M: The Conceptual Development of Quantum Mechanics New York: McGraw-Hill; 1966
  18. Wheeler JA, Zurek WH (eds.): Quantum Theory and Measurements. Princeton: Princeton Univ. Press; 1983
  19. Ballintine LE: Quantum Mechanics: a Modern Development. Singapore: World Scientific; 2003
  20. Bohr N: The Philosophical Writings of Niels Bohr, vol. 4. Oxford: Ox Bow Press; 1987.
  21. Giulini D, Joos E, Kiefer C, Kupsch J, Stamatescu I-O, Zeh HD: Decoherence and the Appearance of a Classical World in Quantum Theory Berlin: Springer; 1996.
  22. Zurek WH: Decoherence, einselection, and the quantum origins of the classical. Rev Mod Phys 2003 75, 715-775.
  23. Allaverdyan AE, Ballian R, Nieuwenhuizen TM: Understanding quantum measurement from the solution of dynamical models. Phys Rep 2013 525 1-166.
  24. De Raedt H, Katsnelson MI, Michielsen K: Quantum theory as the most robust description of reproducible experiments

Ann Phys 2014, 347, 45-73.

  1. De Raedt H, Katsnelson MI, Michielsen K: Quantum theory as plausible reasoning applied to data obtained by robust experiments

Phil Trans Royal Soc A 2016, 374, 20150233

  1. Pattee HH: Quantum mechanics, heredity and the origin of life. J Theor Biol 1967, 17(3), 410-420.
  2. Frank SA: Natural selection. V. How to read the fundamental equations of evolutionary change in terms of information theory. J Evol Biol 2012, 25(12), 2377-2396.
  3. Muller HJ: The Relation of Recombination to Mutational Advance. Mutat Res 1964, 106, 2-9.
  4. Haigh J: The accumulation of deleterious genes in a population—Muller’s Ratchet. Theor Popul Biol 1978, 14(2), 251-267.
  5. Lynch M, Gabriel W: Mutation Load and the Survival of Small Populations. Evolution 1990, 44(7), 1725-1737.
  6. Redfield RJ: Evolution of bacterial transformation: is sex with dead cells ever better than no sex at all? Genetics 1988, 119(1), 213-221.
  7. Iranzo J, Puigbo P, Lobkovsky AE, Wolf YI, Koonin EV: Inevitability of Genetic Parasites. Genome Biol Evol 2016, 8(9), 2856-2869.
  8. Takeuchi N, Kaneko K, Koonin EV: Horizontal gene transfer can rescue prokaryotes from Muller’s ratchet: benefit of DNA from dead cells and population subdivision. G3 (Bethesda) 2014, 4(2), 325-339.
  9. Feynman RP, Hibbs AR: Quantum Mechanics and Path Integrals. New York: McGraw Hill; 1965
  10. Bennett CH: Demons, engines, and the Second Law. Sci Am 1987, 257, 108-117.
  11. Bennett CH: Notes on Landauer’s principle, reversible computation, and Maxwell’s Demon. Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 2003, 34, 501-510.
  12. Landauer R: Irreversibility and Heat Generation in the Computing Process. IBM Journal of Research and Development 1961, 5, 183-191.

 

Share

Статья просматривалась 506 раз(а)
© "Семь искусств"
    года

Василий Демидович: А.Г. Куликовский

Published / by Леонид Комиссаренко / Leave a Comment

У нас была секретарём кафедры Виктория Васильевна Розанцева, которая мне рассказала, что тогда составлялся «особый список абитуриентов». И была «особая комиссия», занимавшаяся приёмом экзаменов у этих абитуриентов. Continue reading

Share
© "Семь искусств"
    года

Валерий Лесов: На пути к физическим принципам биологической эволюции

Published / by Леонид Комиссаренко / 29 комментариев к записи Валерий Лесов: На пути к физическим принципам биологической эволюции

Биологические системы достигают организации, которая значительно превышает сложность любого из известных неживых объектов. Биологические сущности, несомненно, подчиняются законам квантовой физики и статистической механики. Однако, достаточно ли современной физики для адекватного описания модели и объяснения эволюции? Continue reading

Share
© "Семь искусств"
    года

Юрий Климонтович: Руслан Стратонович

Published / by Леонид Комиссаренко / 4 комментария к записи Юрий Климонтович: Руслан Стратонович

В последние годы он увлекался вопросами квантовой теории измерений и опубликовал на эту тему ряд интересных статей. В то же время он выполнил ряд очень сложных и глубоких исследований по кинетической теории систем с химическими реакциями. Continue reading

Share